
Problem Chosen

C
2023

MCM/ICM
Summary Sheet

Team Control Number

2306943

Wordle Forecast Based on ETS and Machine Learning
Model

Summary

Since The New York Times need an analysis of the reported results to
optimize the wordle game and attract more people. We are asked to provide
prediction models and give an accurate prediction.

We get an interval prediction for the number of reported results from January
1 to March 1, 2023. The final prediction is a 95% confidence interval with a
lower bound of 5747.029, a higher bound of 28448.5, and the forecast mean
is 17097.8.

To predict a exact word on a future date, we decide to use BP neural network
to achieve this goal. We use the whole data set to train the model. And its loss
declines and converges. Our prediction of "EERIE" of each tries is [0.0570,
0.0926, 0.2037, 0.2712, 0.1495, 0.1396, 0.0864].

For classifying words by difficulty, We apply EWM to compute weight
of each kind of tries. And we classify the words into 3 difficulty levels (easy,
normal, difficult) and the word ERRIR is classified as a difficult one. Further,we
try to use a model mapping from word to difficulty. We finally achieve 71.2 %
prediction accuracy under 70% training set.

There are interesting features we found in the data set. 1. The curve of
numbers of reported results increases dramatically firstly, and declines sharply,
Then gradually remains at a relatively stable level. 2. the Proportion curve
of the number of people who choose the hard mode fits well to a kind of
formula:y = aebx + cedx, and we calculate the parameter in the formula. 3.
words including the letter ’j’ or ’z’ often have a high proportion of the number
of people who choose the hard mode.

Keywords: BP Neural Network;Exponential Smoothing (ETS); Entropy Weight
Method(EWM)

Team # 2306943 Page 1 of 29

Contents

1 Introduction 3

1.1 Other Assumptions . 4

2 Abbreviations and Symbols 5

3 Predicting the Number of Reported Results 6

3.1 Selecting and Implementing Model 6

3.2 Forecast the internal . 7

3.2.1 Model Principle and Results 7

3.2.2 Prediction for the example 9

3.3 Words’ possible affect on percentage of Hard Mode 9

4 Applying Machine Learning to predict tries rate 10

4.1 processing the data . 10

4.2 Preparing Data Set . 10

4.3 Build the predicting model 11

4.3.1 Structure of the model 11

4.3.2 How the model works 11

4.4 Train And Model Evaluating 12

4.5 Prediction Results and Analysis 13

5 Determinate the Criterion of Difficulty Classification 14

5.1 Model selection . 14

5.2 Model Building and Solving 14

5.3 Further thinking . 16

5.3.1 Model Modification 16

5.3.2 Model Evaluating . 16

Team # 2306943 Page 2 of 29

5.4 examples . 17

5.4.1 predicting result . 17

5.4.2 analysis . 17

6 Features of Data Set 17

6.1 Reported Results Curve . 17

6.2 Hard Mode Proportion Curve 17

6.3 Average EWM Scores for each letter 18

7 Strengths and weaknesses 19

7.1 Strengths . 19

7.2 Weaknesses . 19

8 A letter to Puzzle Editor 21

Appendices 23

Appendix A code 23

A.1 Main function . 23

A.2 Dataloader . 24

A.3 Trainer . 26

A.4 Model . 28

Appendix B the whole prediction till March 1th 28

Team # 2306943 Page 3 of 29

1 Introduction
Wordle is a popular crossword puzzle, founded by Josh Warle. It basic

gameplay is that given different reactions to the letters that the player guesses,
to help the player speculate the final answer. Since its launch in October 2021,
data shows it has had millions of daily active users by January 2022.

According to the statistical display, the total number of players is declining.
In order to help its manufacturers arrange contents of the game more reasonably,
we have great need to build a model to analyze relevant data and predict the
results. Then, we will have a more suitable way to make it better. Our model
needs to fulfill the following tasks:

• Develop a model to explain this variation and use your model to create a
prediction on a future date

• Figure out the attributes of the word affect the percentage of scores reported
that were played in Hard Mode

• develop a model to predict the associated percentages of (1, 2, 3, 4, 5, 6,
X) for a given future solution word on a future date

• Develop and summarize a model to classify solution words by difficulty

For these requirements, common ARIMA model calculate autocorrelation
and partial autocorrelation warrant that it could not figure it out. As to the
ways of difficulty classification, usual approach is not objective. In other words,
special and used models are in need.

In this paper, we build a rather helpful model which could provide particular
solutions to the related issues. It could give trustworthy the number of people
in the future. And evaluate the difficulty and result of a given word. In addition,
it shows the effect of word attributes on the results.

Team # 2306943 Page 4 of 29

1.1 Other Assumptions

• Time series can be decomposed into addictive components or mul-
tiplicative components. An additive series can be depicted by:yt =
Trendt + Seasonalt + Residualt And a multiplicative can be depicted
by:yt = Trendt ∗Seasonalt ∗Residualt. Here y is the data, S means sea-
sonal component, T means trend-cycle component, and R means residual
component at time t. In fact, we can transform the multiplicative series
into the addictive one through logarithmic variation.

• There are several sources of uncertainty when forecasting a future
value of a time series . The first uncertainty in model choice – maybe
another model is correct, or maybe none of the candidate models is correct,
and the second is the uncertainty in the future innovations. And the last is
iii.the uncertainty in the estimates of the parameters of the equations.

• The word given on each day is totally random. In order to focus on the
effection (on reported results) of word and date themselves. we assume
that the relationship between word to word is extremely low, in a word, it
was given randomly.

• Rate of tries can be divided into two parts, one increases the difficulty
level, the other does the opposite. We define a difficulty level.guessing
the right answer in less tries will reduce the difficulty of the word, which
means the bigger rate of percentage less tries, the lower the difficulty level
of that word. So we assume that tries 1-3 decrease the difficulty level,
percentage of tries above 3 augments it.

Team # 2306943 Page 5 of 29

2 Abbreviations and Symbols
Before starting, we list the symbols we used in our paper, and make a

description of each symbol. Wish it can help understand our paper better.

Table 1: Abbreviations and Symbols
Symbol/Abbreviation Description

P the output of our neural network model,which is also a matrix
Tx a target matrix consist of each rate of each tries
dict the map for finding index of each letter
[a, b] the shape of a matrix which rows = a, cols = b
hi a hidden state in BP neural network
α Smoothing parameter for the level of the series
β discount parameter ,with a value between 0 and 1
ϕ damping parameter
bt slope at time t
εt white noise with a Gaussian distribution
xn the state vector at the last time of observation
yt the data at time t
h the number of steps predicted

yn+h|n h-steps-ahead predicted data
σ2 variance

µn+h h-steps-ahead forecast mean
vn+h h-steps-ahead forecast variance
θh intermediate variable in formula (8) and (9)
cj intermediate variable in formula (8) and (9)
zq denotes the qth quantile of a standard Gaussian distribution
w weight vector that contains EWM weight of each tries

Wi the weight matrix of a linear layer
Xi the input matrix including a batch of input data

F(X) the ReLU function, input X is a matrix
Floss(X,Y) the loss function, inputs X,Y are matrices
Fids(X) the function that can convert the letter into its index
ets() the function of Exponential smoothing state space model

Team # 2306943 Page 6 of 29

3 Predicting the Number of Reported Results
In this section, we employ time series forecasting method to achieve a pre-

diction interval for the number of reported results on March 1, 2023.

3.1 Selecting and Implementing Model

Through the observation of this time series, we found that after 100 days, the
recorded numbers decreased rapidly and gradually remained at a relatively stable
level. Therefore, we consider using the exponential smoothing model(ETS) to
fit the data.

To identify the best exponential smoothing model suitable for the given time
series. We implement a common-sense strategy expanded by Chatfield[1]. Here
we give a nutshell of the strategy: Here we give a nutshell of the strategy:

• Plot the time series , observe the trend, seasonal variation and other data
characteristics. Outliers, and quick changes in structure are important
characteristics that indicating ETS is not appropriate.

• Examine the outliers , considering making some adjustment to modify the
wrong data.

• Decide on the form of trend and seasonal variation.(We consider make
transformation to stationary the time series or minimize the variance
through difference .

• Fit an appropriate method. Akaike’s Information Criterion (AIC) along
with AIC corrected for small sample bias (AICc) and the Bayesian Infor-
mation Criterion (BIC) are applied to choose an appropriate ETS method.

We employ the ETS statistical framework in the forecast package of R to
forecast the interval for the number of reported results on March 1, 2023.First,We
implement ets() function to select the method by minimizing AICc.

The model selected is ETS(M,Ad,N) , which means nonseasonal damped
addictive trend method with multiplicative errors. In this paper, we call this
model the DA-N(damped addictive) model. It can be depicted by the following
3 equations[2]:

yt = (lt−1 + ϕ)(1 + εt) (1)

lt = (1 + αεt)(lt−1 + ϕt−1by−1) (2)

Team # 2306943 Page 7 of 29

bt = ϕbt−1 + (lt−1 + ϕbt− 1)εt (3)

The equations are forecast equation, level equation and slope equation. In
these equations,εt is a white noise process with a variance σ2. For the parameter
estimates above, here are the explanation: the ETS(M,Ad,N) model has the
reduced rate ϕbt−1 at time t.The output also returns the estimates of initial state:
l0 = 65494.507, b0 = 15247.8629. The parameter estimates are:

Table 2: parameters’ value
parameter α ϕ AIC AICc BIC

value 0.1573 0.9688 8319.0 8319.239 8342.3

The damping exponent ϕ as a value of 0.9688(slightly smaller than 1). In
practice, ϕ has the effect of slowing the trend, which means the time series
should approach to a constant over time.

Figure 1: Components of ETS(M,Ad,N) method

3.2 Forecast the internal
3.2.1 Model Principle and Results

To predict an accuracy interval ,it’s ideal for taking all the uncertainties into
account. However, it’s a complex and impossible problem. Most time series
analysis just takes the uncertainty in future innovations into account. Rob J.
Hyndman simply the prediction model and internally into this short form:

yn+h|n ≡ yn+h|xn (4)

Team # 2306943 Page 8 of 29

The equation(4) means that the prediction distribution in n steps is a distri-
bution of a future value of the series given the model, its estimated parameters
and the state vector at the last observation. The forecast mean is denoted by the
equation(5), and the equation(6) denotes the forecast variance.

µn+h = E(yn+h|xn) (5)

vn+h = v(yn+h|xn) (6)

In our ETS(M,Ad,N) model forecast variance[3] is given by

vn+h|n = (1 + σ2)θh − µ2
n+h|n (7)

Where

θ1 = µ2
n+1|n, θh = µ2

n+h|n + σ2
h−1∑
j

c2jθh−j (8)

µn+h|n = ln + ϕhbn, cj = α + β

j∑
i=1

ϕi (9)

Figure 2: Forecasts from ETS(M,Ad,N)

The prediction distribution above is Gaussian, as ETS(M,Ad,N) model is
linear and the errors are Gaussian. Hence, we can calculate η % prediction

Team # 2306943 Page 9 of 29

internal from the calculated forecast means and variance through µn+h|n ±
zα

2

√
vn+h|n, α here is constant.

In practice, we employ the forecast() function in R to simplify the calculation
process and get the following results. (The following results are calculated by
algebraic rather than simulated data).

The results show that the data decline slowly and downward trend tends to be
stable within the predicted coming 60 days. The prediction interval gradually
increases, and the diagram shows the 90% prediction interval calculated from
the 0.05 and 0.95 quantiles.

3.2.2 Prediction for the example

Table 3: exact value and interval on March 1th
exact value interval

17097.8 (5747.029, 28448.5)

3.3 Words’ possible affect on percentage of Hard Mode

We divide the whole words into two parts: one is that words have the same
letters, and the other is that words’ letters differentiate from each other. And
draw them respectively in the figure below. The figure shows words with the
same letters have a subtle boosting effect on hard mode percentage since the red
line is above the blue line. Thus we can guess the former kind of word is more
complicated.

Figure 3: Hard percentage of different class words

Team # 2306943 Page 10 of 29

4 Applying Machine Learning to predict tries rate
In this task, we need to find a solution that can predict 7 results based on 2

inputs–Date and word. In a word, find a mapping function that can:

f [Data, word] =⇒ [1tries, ..., 7tries]

So we construct a BP neural network as our mapping function

4.1 processing the data

Since some words in the chart mainly consist of 5 letters, we neglect those
words that length less or more than five.

Each row in the data.csv consists of words, reported results and rate of
tries.But the data type of the words is string,meaning those string values can’t
be directly put into our model to compute can predict. The first step is to convert
the string type into one that can be calculated.. So we establish a dictionary that
can map letters to numbers. here is our dict :

Table 4: our dictionary
a b c d e f g h i j k l m
1 2 3 4 5 6 7 8 9 10 11 12 13
n o p q r s t u v w x y z
14 15 16 17 18 19 20 21 22 23 24 25 26

Then we have our dictionary, we use Fids(X) to map letters to numbers
(index of the letter), the figure below is an example of how the function works
on the word "manly".

Figure 4: how the Fids works

4.2 Preparing Data Set

After changing words into a list of integer numbers, we can establish our
input data. According to the task, we need to predict the rate of each tries for
a given word on a future date. Thus we consider each row of data as a sample;
its contest numbers are on behalf of its date. Since time is a cumulative value,

Team # 2306943 Page 11 of 29

Figure 5: data set structure

the more significant the contest number, the more the cumulative effect of time.
We include this value in the input data set as a sample characteristic.

• Nums : the contest numbers of a sample

• word_ids : a matrix consists of 354 samples, each row includes 6 elements
which are 5 indexes and the contest number

• targets : a matrix consists of 354 samples, each row includes the rate of
each tries.

4.3 Build the predicting model
4.3.1 Structure of the model

After finishing the preparation task above, we used the python package called
pytorch to make our model. The model consists of 2 fully connected layer; each
layer has a weight matrix(the hidden matrix in Figure 3), the shape of the first
matrix is [6,14], and the other one is [14,7]. Also, between the two, we set a
ReLU layer as the activating layer.

Here is how the ReLU layer works:

F (X) =

{
0, x ≤ 0

X x > 0

4.3.2 How the model works

The whole date set includes 354 samples; since it’s too big for a single compu-
tation, we divide all the samples into many batches, which size 16. Then our
model needs to calculate 16 samples in an iteration. A batch is the input for the
model; We set it to X, whose shape is [16,6].

Team # 2306943 Page 12 of 29

Then multiply matrix X and W1(hidden matrix in Figure 3). Get the
h1(hidden state in Figure 3). After h1 goes through activating layer, multi-
ply h2 and W2 then get prediction of the model.

h1 = XW1 (10)

h2 = F (h1) (11)
P = h2W2 (12)

Next step: calculate the Cross Entropy loss of the P and T , xi and yi here are
elements in matrix P and T.

Floss(P, T) = −
n∑

i=1

P (xi)log(
expT (yi)
n∑

i=1

expT (yi)
) (13)

Then do the back propagation to optimize the weight matrix

Figure 6: neural network structure

4.4 Train And Model Evaluating

To evaluate the model, we record the average loss of an epoch(a total iteration
including all samples), and after 40 epochs, we draw the curve above.

From the curve, we can see that loss is declining overall. From more than 15
to less than 2, and converging to 1.8. which means the prediction is more and
more accurate during the iteration.

Team # 2306943 Page 13 of 29

Figure 7: loss curve of each epoch

Figure 8: loss curve of each batch

4.5 Prediction Results and Analysis

Applying the model to the given word, our model computes the following
result(in Table 3). The rate of 4 tries is the highest, 27.12%, and rate of 1
try is the lowest (5.7%); those results are similar to the previous data, which
indicates the model is reliable. But according to the description of the wordle
game, its says each word used for guessing is an actual word, which means there
are some relationships between letters, all 5 letters are not independent of each
other. And we only use fully connected layers when building the model; this
kind of structure can’t extract the characteristic between the letters. This is the
uncertainty associated with our model and predictions.

1 tries 2 tries 3 tries 4 tries 5 tries 6 tries 7 or more tries
0.0570 0.0926 0.2037 0.2712 0.1495 0.1396 0.0864

Table 5: the predict result (percentage)

Team # 2306943 Page 14 of 29

5 Determinate the Criterion of Difficulty Classification
5.1 Model selection

In the data given, we believe that when the player answered correctly, the
distribution of the results of the number of times used reflected, The difficulty
of solving the word. In other terms, if the player generally spends more time
solving the problem, you can think of this word as more complex. As shown in
the figure below, the length of each color piece represents the rate of each kind
of tries. From left to right, the deep blue piece stands for the ratio of 1 try, and
the deep red piece stands for seven or more tries. Players take more time than’
crank’ to get the answer–’gorge’, so it can be considered that ’gorge’ is harder
than ’crank’.

Figure 9: 5 example words,and its tries proportion

We need a more objective method of calculating weights to predict the
difficulty. So we introduce the entropy weight method. This illustrates the
weight impact of each data on the final score. After that, each word is scored
and evaluated. Eventually, difficulty categories are divided based on the score
results.

5.2 Model Building and Solving

Because the more times it takes to get the result, the more complex the word
can be considered, we can put ’4’, ’5’, ’6’, ’x’ are set as a positive indicator,
’1, ’2’, ’3’ times the data is set as positive indicator, and through the following
formula, for it separate standardization is required. At this point, all indicators
become the higher the score, the greater the difficulty

f(X) =

{
Xij−min(Xi)

max(Xi)−min(Xi)
, positive indicator

max(Xi)−Xij

max(Xi)−min(Xi)
, negtive indicator

(14)

Team # 2306943 Page 15 of 29

After that, we can get a matrix of standard data – R = (rij)m∗n. ri stands for
the indicator i of a sample, the entropy is Ej:

Ej = − 1

lnm

m∑
i=1

pijlnpij (15)

And the weight of each indicator is:

wj =
1− Ej∑n

j=1(1− Ej)
(16)

Then, using the formula, for each indicator, calculate its information en-
tropy Ej. Then using the information entropy Ej, according to the formula, the
weights of 1 7(x) are respectively [1.412,2.357,5.419,3.408,8.882,20.181,58.34],
the table below shows the results.

negative positive
1 tries 2 tries 3 tries 4 tries 5 tries 6 tries 7 or more tries

1.4 2.36 5.42 3.41 8.88 20.18 58.34

Table 6: weight results of each tries

Using the weights, linearly multiplication yields the final score, and the
formula to compute the scores is S(p); we define the attempt times vector as
p,which contains all 7 kinds tries percentage of a sample.

S(p) =
7∑

i=1

wipi (17)

Figure 10: scores sorted by order

After attaining all the scores, we rank all samples by their scores and sort
them by order; the figure shows scores of most words stay between 5 and 10.

Team # 2306943 Page 16 of 29

We can get the difficulty classification criteria for this: scores within [0,6.972]
are easy, scores within [6.972,8.727] are normal, and scores above 8.727 are
hard.

5.3 Further thinking

The solution offered above gives us a way to judge whether a word is easy,
normal or hard. But to get the score, we should acquire the percentage on
each kind of tries of a word. However, can we judge a word’s difficulty just by
the word itself? Here comes our classification model, based on the BP neural
network built in the second task. We try to apply it to classify the words.

f [word] → [easy, normal, hard]

5.3.1 Model Modification

The model built in the second question can output 7 results; since in this question
we need to classify words into 3 class, we change the model output dimension
to 3, still using two fully connected layers and a ReLU layer. Then we record
the average loss per epoch and iterate the whole data set 1000 times. Also we
use 70% of the data set to train the model and 30% of the data set to calculate
the accuracy.

5.3.2 Model Evaluating

Figure 11: loss of modified model

Figure 8 shows the loss curve of each iteration; the curve fluctuates very
much and doesn’t converge to a value; nonetheless, the loss decline as a whole.
And its accuracy can be up to 71.2%. Not very high, but it still works.

Team # 2306943 Page 17 of 29

5.4 examples
5.4.1 predicting result

As predicted by the second question, "EERIE" requires the percentage that
guessed the word [0.0570, 0.0926, 0.2037, 0.2712, 0.1495, 0.1396, 0.0864],
multiplied by the weights and scored as 11.5125, above 8.727, so we consider it
difficult. And we put the data into the modified model, and it classifies the word
"EERIE" as "normal." So it is different from the result computed by EWM.

5.4.2 analysis

Prediction of our modified model didn’t match the result calculate by EWM,
which means the model need to be improve. and we conclude some reasons that
may cause the not-good performance.

• The data set is too small, our neural network model can’t fully optimize its
parameters

• Our range selection is objective. Can’t classify and tag each word appro-
priately.

• The numbers of network layers too small.

• The training strategy is not good enough to make loss converge stably.

6 Features of Data Set
6.1 Reported Results Curve

At the beginning of the Curve shown in figure 1, the reported results keep
increasing dramatically. In this stage, we guess that people are interested in the
newly appeared game and want to have a try. Then as time keeps moving, the
curve decreases sharply, which shows people begin to lose interest in this game.
About 200 days later, the gradient reduces, and the curve becomes steady, the
tendency to converge to a value.

6.2 Hard Mode Proportion Curve

Once we get the data set, we compute the Proportion of the number of people
who choose the hard mode and draw its curve for the raw scatter diagram, the
proportion increases as time goes by, but the gradient seemly keeps declining.
Through Matlab, we find a formula to fit the curve.

y = aebx + cedx (18)

Team # 2306943 Page 18 of 29

parameter value confidence interval
a 1.909 ∗ 105 (−2.561 ∗ 1013, 2.561 ∗ 1013)
b −0.002659 (−22.54, 22.54)
c −1.909 ∗ 105 (−2.561 ∗ 1013, 2.561 ∗ 1013)
d −0.002659 (−22.54, 22.54)

Table 7: parameters’ value and confidence interval

To evaluate the formula’s accuracy, we calculate each data point’s residual.
The figure below shows the residual of each data point fluctuates around 0.

Figure 12: curve figure and residual

6.3 Average EWM Scores for each letter

Firstly, we select those words with a specific letter. and compute the average
EWM scores of all the terms, the results shown in the figure below:

On the x-axis, we use numbers 1-26 to represent the letters ’a’ to ’b.’ The
figure shows that words with the letters ’j’ and ’z’ have the highest average
EWM scores. Thus those words may have a higher difficulty level. We guess
it may be due to the frequency people use it daily. So we find a chart of letter
frequency. Fortunately, it certificates our assumption.

Team # 2306943 Page 19 of 29

Figure 13: Average EWM Scores

Figure 14: letter frequency[4]

7 Strengths and weaknesses
7.1 Strengths

• ETS model can be easily solved by algebra The model are linear and εt is
assumed to be Gaussian, yn+h|xn is also Gaussian. Therefore, prediction
intervals are easily obtained from the forecast means and variance.

• Prediction of ETS is robust The ETS consider a total message of the
given data set, and give a appropriate results.

• A clear data processing strategy In the second task,we make a clear and
general strategy for data pre-processing. It can be used for every word and
replaced with a computable vector.

7.2 Weaknesses

• Model overfitting Since the whole data set only have 354 samples, our
model may only do an excellent job in this small data set. Doesn’t have

Team # 2306943 Page 20 of 29

a broad application. And this BP neural network encounters a problem
in task 3. it’s not a mature model for such classification and needs to be
improved.

• Limitations of the entropy weight method If the change in the indicator
value is small or suddenly large or small, the entropy weight method has
limitations. In the given data set, the percentage of 1 try doesn’t fluctuate
very much. So it may have some lousy effect on the classification.

• Accuracy need to be imporve in the third task, our modified model only
have 71.2 %., not very high.

Team # 2306943 Page 21 of 29

8 A letter to Puzzle Editor
Dear,editer

Congratulation on the success of your company’s game. Undoubtedly, we all
wish this great game could get better. To help manage your game better, we’ve
built models to estimate the number of total players for the future and predict
the puzzle’s difficulty. In a nutshell, our model works in the following three
aspects:

• Read the past data and give a prediction of the number of the reported
result in one day.

• Predict the distribution of the reported results, and verify their accuracy
for a given solution word.

• Use the past data to classify solution words by difficult and describe the
difficulty of the word.

For function 1, it;s evident that there is a clear relationship between the results
and the data. Because of this, we adopt the method of temporal sequence to
predict the results. In this way, business activity is arranged better, and puzzles
can be improved by analyzing anomalies. For example, you can conjecture or
verify what types of words are more challenging by those anomalies. Is it more
complex if the word has two or more of the same letters ? What about some
unique letters? We can use these predicted results to ameliorate the puzzle for
player.

As for the second aspect, we choose back propagation neural network to manage
it. It is gratifying that we can now predict the distribution of the reported results
with some accuracy. According to my model, it will give you an accurate
prediction of the puzzle.

Ultimately, we use the entropy weight method to classify solution words by
difficulty. According to our calculations, we’ve divided the existing scores into
four difficulty levels. With the help of this classification, we can better consider
the difficulty of the word and adjust it to leave the player with a better game
experience.

We also found several interesting phenomena in establishing and using our
models. First of all, as time goes on, while the number of players has declined,
the proportion of players choosing infinite mode has increased. Secondly, the
solution word, which contains the letter ’j’ or ’z,’ would be more difficult for

Team # 2306943 Page 22 of 29

the player. Lastly, the word with the same letters would affect the percentage
of reported scores played in Hard Mode. We sincerely hope these models will

help your company to manage "Wordle." Bless your company can get better and
better.

Looking forward to your reply, we’d be glad if we could help you more.

Team: 2306943

Team # 2306943 Page 23 of 29

References
[1] Chatfield, C. (2004). The analysis of time series: An introduction (6th

edition). Boca Raton7 Chapman & Hall/CRC Press.

[2] Gardner, E. S. (2006). Exponential smoothing: The state of the art – Part
II. International Journal of Forecasting, 22,637 - 666.

[3] Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008).
Forecasting with exponential smoothing: The state space approach. Berlin:
Springer-Verlag.

[4] https://en.wikipedia.org/wiki/Letter_frequency

Appendices

Appendix A code
Here are simulation programmes we used in our model as follow.

A.1 Main function

Input Python source:
import argparse
from data_loader import save_dataset
from trainer import trainer

def main(args):
data = [5,5,18,9,5]
Trainer = trainer(args=args)
#Trainer.train()
Trainer.load_model()
Trainer.test(data)
print(’all_done’)

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("−−data_dir", default="./data/saved_train_e",

type=str,
help="The input data dir")

parser.add_argument("−−batch_size", default=16,
type=int,
help="Batch size for training.")

parser.add_argument("−−mode", default=0,
type=int,
help="mode for training.")

https://en.wikipedia.org/wiki/Letter_frequency

Team # 2306943 Page 24 of 29

parser.add_argument("−−eval_batch_size",
default=64, type=int,
help="Batch size for training.")

parser.add_argument("−−learning_rate", default=4e−4,
type=float,
help="The initial learning rate for Adam.")

parser.add_argument("−−num_train_epochs", default=1000.0,
type=float,
help="Total number of training epochs to perform.")

parser.add_argument("−−dropout_rate", default=0.5,
type=float,
help="Dropout for fully−connected layers")

parser.add_argument("−−input_dim", default=5,
type=int,
help="input_dim for training.")

parser.add_argument("−−hidden_dim", default=14,
type=int,
help="hidden_dim for training.")

parser.add_argument("−−output_dim", default=7,
type=int,
help="output_dim for training.")

args= parser.parse_args()
main(args)

A.2 Dataloader

Input Python source:
import torch
from torch.utils.data import TensorDataset
import os
import csv
import numpy as np
abc_map = {

’a’:1,
’b’:2,
’c’:3,
’d’:4,
’e’:5,
’f’:6,
’g’:7,
’h’:8,
’i’:9,
’j’:10,
’k’:11,
’l’:12,
’m’:13,
’n’:14,
’o’:15,
’p’:16,
’q’:17,
’r’:18,
’s’:19,
’t’:20,
’u’:21,
’v’:22,

Team # 2306943 Page 25 of 29

’w’:23,
’x’:24,
’y’:25,
’z’:26

}
def load_data():

root_dir = ’./’
data_dir = os.path.join(root_dir,’data’,’data_sq2.csv’)

pos = 6
nums_id = []
cat_ids = []
words = []

all_trys = []
targets = []
with open(data_dir,’r’) as fp:

for i,line in enumerate(fp):
if i == 0:

continue
line = line.strip().split(’,’)
nums_id.append(int(line[0]))
word = []
target = [0,0,0]
if float(line[−1]) <= 6.972:

target[0] = 1
elif float(line[−1]) <= 8.727:

target[1] = 1
else:

target[2] = 1
for letter in line[3]:

assert len(line[3]) == 5,’error with the len of the word!’
word.append(abc_map[letter])

targets.append(target)
cat_ids.append(word+[int(line[0])])
words.append(word)
all_trys.append([int(k)/100.0 for k in line[pos:pos+7]])

all_nums_ids = torch.tensor(nums_id)
all_trys_rate = torch.tensor(all_trys)
all_words_ids = torch.tensor(words)
all_cat_ids = torch.tensor(cat_ids)
all_target_ids = torch.tensor(targets)
dataset = TensorDataset(all_nums_ids,

all_words_ids,
all_trys_rate,
all_cat_ids,all_target_ids)

return dataset

def save_dataset():
file_name = "saved_{}_{}".format(’train’,’e1’)
save_file_to = os.path.join(’./’,’data’,file_name)
if os.path.exists(save_file_to):

dataset = torch.load(save_file_to)
else:

dataset = load_data()
torch.save(dataset,save_file_to)

return dataset
def export_data():

Team # 2306943 Page 26 of 29

data_dir = os.path.join(’./’,’data’,’data_sq2.csv’)
filename = ’./data/modify_data.csv’
fp0 = open(filename,’w’,newline=’’,encoding=’utf−8’)
writer = csv.writer(fp0)
with open(data_dir,’r’) as fp:

for i,line in enumerate(fp):
if i == 0:

continue
word = list(np.zeros(26))
line = line.strip().split(’,’)
for letter in line[3]:

assert len(line[3]) == 5,’error with the len of the word!’
word[abc_map[letter]−1] += 1

word.append(line[5])
writer.writerow(word)

if __name__ == "__main__":
#dataset = save_dataset()
export_data()
print(’over!’)

A.3 Trainer

Input Python source:
from data_loader import save_dataset
from torch.utils.data import DataLoader, SequentialSampler
from model import linear_model,classficer
import torch
from torch import optim
from tqdm import tqdm,trange
from torch.utils.tensorboard import SummaryWriter
import torch.nn as nn
import os
import numpy as np

class trainer(object):
def __init__(self,args) −> None:

self.args = args
self.dataset = save_dataset()
if args.mode == 1:

self.model = linear_model(self.args)
else:

self.model = classficer(self.args)
if torch.cuda.is_available():

self.device = torch.device(’cuda:0’)
else:

self.device = torch.device(’cpu’)
self.loss_fn = nn.CrossEntropyLoss().to(self.device)
self.model.to(self.device)
self.tb = SummaryWriter(’./graph’)

def train(self):
self.model.train()
train_sampler = SequentialSampler(self.dataset)

Team # 2306943 Page 27 of 29

train_dataloader = DataLoader(dataset=self.dataset,
sampler = train_sampler,
batch_size=self.args.batch_size)

t_batchs = len(train_dataloader)* self.args.num_train_epochs
self.model.zero_grad()
t_step = 0
optimizer = optim.Adam(params=self.model.parameters(),

lr=self.args.learning_rate)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,

T_max=t_batchs)
print("begin training")
epoch_iterator = trange(int(self.args.num_train_epochs),

desc=’epoch iterating’)
for _ in epoch_iterator:

pbar = tqdm(train_dataloader,desc="Iteration")
avg_loss = 0
for i, batch in enumerate(pbar):

if i>15:
break

batch = tuple(t.to(self.device) for t in batch)
inputs = batch[1].to(torch.float32)
preds = self.model(inputs)
loss = self.loss_fn(preds,batch[−1].to(torch.float32))
avg_loss += loss.item()

pbar.set_postfix(loss = loss.item())
loss.backward()
optimizer.step()
#scheduler.step()

t_step += 1
self.tb.add_scalar(’loss 01(without relu in the last output)’,

scalar_value=(avg_loss/((354*0.7)//self.args.batch_size)),
global_step=t_step)

self.save_model()

def test(self,data):#the data is a list type with key ’word_ids + date_ids’,
self.model.eval()
data = torch.tensor(data).to(torch.float32)
data.to(self.device)
with torch.no_grad():

preds = self.model(data)
preds = nn.functional.softmax(preds)

print(preds)

def evaluate(self):
self.model.eval()
train_sampler = SequentialSampler(self.dataset)
train_dataloader = DataLoader(dataset=self.dataset,

sampler = train_sampler,batch_size=32)
total = 0
gb_step = 0
with torch.no_grad():

pbar = tqdm(train_dataloader,desc="Iteration")
for i,batch in enumerate(pbar):

if i<8:
continue

Team # 2306943 Page 28 of 29

gb_step += 1
inputs = batch[1].to(torch.float32)
preds = self.model(inputs)
max_preds = np.argmax(preds,axis=1)
max_targets = np.argmax(batch[−1],axis=1)
total += np.sum((max_preds == max_targets).numpy())

acc = total/(gb_step*9)
print(acc)
return acc

def save_model(self):
torch.save(self.model,’model_for2.pth’)
print(’the model is saved in flle’)

def load_model(self):
filename = ’model_for2.pth’
self.model = torch.load(filename)
self.model.to(self.device)
print(’model_loaded’)

A.4 Model

Input Python source:
import torch.nn as nn
class linear_model(nn.Module):

def __init__(self,args) −> None:
super(linear_model,self).__init__()
self.fc1 = nn.Linear(args.input_dim,args.hidden_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(args.dropout_rate)
self.fc2 = nn.Linear(args.hidden_dim,args.output_dim)

def forward(self,x):
output = self.fc1(x)#x.shape = [16,6]
output = self.relu(output)
output = self.fc2(output)
#output = self.relu(output)
return output

class classficer(nn.Module):
def __init__(self,args) −> None:

super().__init__()
self.fc1 = nn.Linear(args.input_dim,args.hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(args.hidden_dim,3)

def forward(self,x):
output = self.fc1(x)#x.shape = [16,6]
output = self.relu(output)
output = self.fc2(output)
return output

Appendix B the whole prediction till March 1th

Team # 2306943 Page 29 of 29

date ids exact value lower bound upper bound
360 20059.95 16477.269 23642.62
361 19945.62 16328.833 23562.41
362 19834.86 16173.77 23495.94
363 19727.54 16011.909 23443.18
364 19623.57 15843.238 23403.9
365 19522.84 15667.883 23377.8
366 19425.24 15486.088 23364.4
367 19330.69 15298.192 23363.19
368 19239.08 15104.601 23373.56
369 19150.33 14905.771 23394.88
370 19064.34 14702.184 23426.49
371 18981.02 14494.335 23467.71
372 18900.31 14282.719 23517.9
373 18822.1 14067.817 23576.39
374 18746.34 13850.094 23642.58
375 18672.93 13629.988 23715.88
376 18601.81 13407.91 23795.72
377 18532.91 13184.243 23881.57
378 18466.15 12959.34 23972.96
379 18401.47 12733.522 24069.42
380 18338.81 12507.085 24170.53
381 18278.1 12280.296 24275.9
382 18219.28 12053.396 24385.16
383 18162.29 11826.602 24497.98
384 18107.08 11600.109 24614.05
385 18053.58 11374.092 24733.08
386 18001.76 11148.707 24854.81
387 17951.55 10924.091 24979
388 17902.9 10700.368 25105.43
389 17855.77 10477.646 25233.88
390 17810.1 10256.021 25364.18
391 17765.86 10035.577 25496.14
392 17723 9816.386 25629.6
393 17681.47 9598.513 25764.42
394 17641.23 9382.011 25900.45
395 17602.25 9166.929 26037.57
396 17564.48 8953.304 26175.66
397 17527.89 8741.172 26314.61
398 17492.44 8530.559 26454.32
399 17458.1 8321.488 26594.7
400 17424.82 8113.976 26735.66
401 17392.58 7908.035 26877.12
402 17361.34 7703.677 27019.01
403 17331.08 7500.906 27161.25
404 17301.76 7299.724 27303.79
405 17273.35 7100.133 27446.57
406 17245.83 6902.129 27589.53
407 17219.17 6705.707 27732.62
408 17193.33 6510.861 27875.8
409 17168.3 6317.581 28019.02
410 17144.05 6125.857 28162.25
411 17120.56 5935.678 28305.44
412 17097.8 5747.029 28448.5

	Introduction
	Other Assumptions

	Abbreviations and Symbols
	Predicting the Number of Reported Results
	Selecting and Implementing Model
	Forecast the internal
	Model Principle and Results
	Prediction for the example

	Words' possible affect on percentage of Hard Mode

	Applying Machine Learning to predict tries rate
	processing the data
	Preparing Data Set
	Build the predicting model
	Structure of the model
	How the model works

	Train And Model Evaluating
	Prediction Results and Analysis

	Determinate the Criterion of Difficulty Classification
	Model selection
	Model Building and Solving
	Further thinking
	Model Modification
	Model Evaluating

	examples
	predicting result
	analysis

	Features of Data Set
	Reported Results Curve
	Hard Mode Proportion Curve
	Average EWM Scores for each letter

	Strengths and weaknesses
	Strengths
	Weaknesses

	A letter to Puzzle Editor
	Appendices
	Appendix code
	Main function
	Dataloader
	Trainer
	Model

	Appendix the whole prediction till March 1th

